Theorems |
ABS_SIMP : !t1 t2. (\x. t1) t2 = t1AND_FALSE_THM : !t. t /\ F <=> FAND_FORALL_THM : !p q. (!x. p x) /\ (!x. q x) <=> (!x. p x /\ q x)AND_TRUE_THM : !t. t /\ T <=> tBETA_THM : !f y. (\x. f x) y = f yCONJ_ASSOC' : !t1 t2 t3. (t1 /\ t2) /\ t3 <=> t1 /\ t2 /\ t3CONJ_REFL : !t. t /\ t <=> tCONJ_SYM : !t1 t2. t1 /\ t2 <=> t2 /\ t1DISJ_ASSOC' : !t1 t2 t3. (t1 \/ t2) \/ t3 <=> t1 \/ t2 \/ t3DISJ_REFL : !t. t \/ t <=> tDISJ_SYM : !t1 t2. t1 \/ t2 <=> t2 \/ t1EQ_FALSE_THM : !t. (t <=> F) <=> ~tEQ_IMP : !a b. (a <=> b) ==> a ==> bEQ_REFL : !x. x = xEQ_SYM : !x y. x = y ==> y = xEQ_SYM_EQ : !x y. x = y <=> y = xEQ_TRANS : !x y z. x = y /\ y = z ==> x = zEQ_TRUE_THM : !t. (t <=> T) <=> tEXISTS_OR_THM : !p q. (?x. p x \/ q x) <=> (?x. p x) \/ (?x. q x)EXISTS_REFL : !a. ?x. x = aEXISTS_SIMP : !t. (?x. t) <=> tEXISTS_UNIQUE : !p. (?!x. p x) <=> (?x. p x /\ (!y. p y ==> y = x))EXISTS_UNIQUE_ALT : !p. (?!x. p x) <=> (?x. !y. p y <=> x = y)EXISTS_UNIQUE_REFL : !a. ?!x. x = aEXISTS_UNIQUE_THM : !p. (?!x. p x) <=> (?x. p x) /\ (!x x'. p x /\ p x' ==> x = x')FALSE_AND_THM : !t. F /\ t <=> FFALSE_EQ_THM : !t. (F <=> t) <=> ~tFALSE_IMP_THM : !t. F ==> t <=> TFALSE_OR_THM : !t. F \/ t <=> tFORALL_AND_THM : !p q. (!x. p x /\ q x) <=> (!x. p x) /\ (!x. q x)FORALL_SIMP : !t. (!x. t) <=> tFORALL_UNWIND_THM1 : !p a. (!x. a = x ==> p x) <=> p aFORALL_UNWIND_THM2 : !p a. (!x. x = a ==> p x) <=> p aIMP_AND_DISTRIB : !p q r. p ==> q /\ r <=> (p ==> q) /\ (p ==> r)IMP_FALSE_THM : !t. t ==> F <=> ~tIMP_IMP : !p q r. p ==> q ==> r <=> p /\ q ==> rIMP_REFL : !t. t ==> tIMP_TRUE_THM : !t. t ==> T <=> TLEFT_AND_DISTRIB : !p q r. p \/ q /\ r <=> (p \/ q) /\ (p \/ r)LEFT_AND_EXISTS_THM : !p q. (?x. p x) /\ q <=> (?x. p x /\ q)LEFT_AND_FORALL_THM : !p q. (!x. p x) /\ q <=> (!x. p x /\ q)LEFT_EXISTS_AND_THM : !p q. (?x. p x /\ q) <=> (?x. p x) /\ qLEFT_FORALL_IMP_THM : !p q. (!x. p x ==> q) <=> (?x. p x) ==> qLEFT_IMP_EXISTS_THM : !p q. (?x. p x) ==> q <=> (!x. p x ==> q)LEFT_OR_DISTRIB : !p q r. p /\ (q \/ r) <=> p /\ q \/ p /\ rLEFT_OR_EXISTS_THM : !p q. (?x. p x) \/ q <=> (?x. p x \/ q)MONO_AND : !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2MONO_EXISTS : !p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)MONO_FORALL : !p q. (!x. p x ==> q x) ==> (!x. p x) ==> (!x. q x)MONO_IMP : !p1 p2 q1 q2. (p2 ==> p1) /\ (q1 ==> q2) ==> (p1 ==> q1) ==> p2 ==> q2MONO_NOT : !p q. (q ==> p) ==> ~p ==> ~qMONO_OR : !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2NOT_FALSE_THM : ~F <=> TNOT_TRUE_THM : ~T <=> FOR_EXISTS_THM : !p q. (?x. p x) \/ (?x. q x) <=> (?x. p x \/ q x)OR_FALSE_THM : !t. t \/ F <=> tOR_IMP_DISTRIB : !p q r. p \/ q ==> r <=> (p ==> r) /\ (q ==> r)OR_TRUE_THM : !t. t \/ T <=> TRIGHT_AND_DISTRIB : !p q r. p /\ q \/ r <=> (p \/ r) /\ (q \/ r)RIGHT_AND_EXISTS_THM : !p q. p /\ (?x. q x) <=> (?x. p /\ q x)RIGHT_AND_FORALL_THM : !p q. p /\ (!x. q x) <=> (!x. p /\ q x)RIGHT_EXISTS_AND_THM : !p q. (?x. p /\ q x) <=> p /\ (?x. q x)RIGHT_FORALL_IMP_THM : !p q. (!x. p ==> q x) <=> p ==> (!x. q x)RIGHT_IMP_FORALL_THM : !p q. p ==> (!x. q x) <=> (!x. p ==> q x)RIGHT_OR_DISTRIB : !p q r. (p \/ q) /\ r <=> p /\ r \/ q /\ rRIGHT_OR_EXISTS_THM : !p q. p \/ (?x. q x) <=> (?x. p \/ q x)SWAP_EXISTS_THM : !p. (?x y. p x y) <=> (?y x. p x y)SWAP_FORALL_THM : !p. (!x y. p x y) <=> (!y x. p x y)TRIV_AND_EXISTS_THM : !p q. (?x. p) /\ (?x. q) <=> (?x. p /\ q)TRIV_EXISTS_AND_THM : !p q. (?x. p /\ q) <=> (?x. p) /\ (?x. q)TRIV_EXISTS_IMP_THM : !p q. (?x. p ==> q) <=> (!x. p) ==> (?x. q)TRIV_FORALL_IMP_THM : !p q. (!x. p ==> q) <=> (?x. p) ==> (!x. q)TRIV_FORALL_OR_THM : !p q. (!x. p \/ q) <=> (!x. p) \/ (!x. q)TRIV_OR_FORALL_THM : !p q. (!x. p) \/ (!x. q) <=> (!x. p \/ q)TRUE_AND_THM : !t. T /\ t <=> tTRUE_EQ_THM : !t. (T <=> t) <=> tTRUE_IMP_THM : !t. T ==> t <=> tTRUE_OR_THM : !t. T \/ t <=> TTRUTH : TUNWIND_THM1 : !p a. (?x. a = x /\ p x) <=> p aUNWIND_THM2 : !p a. (?x. x = a /\ p x) <=> p aWLOG_RELATION : !r p.
(!x y. p x y ==> p y x) /\
(!x y. r x y \/ r y x) /\
(!x y. r x y ==> p x y)
==> (!x y. p x y) |