Entry Value
Name EXISTS_UNIQUE_REFL
Conclusion !a. ?!x. x = a
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !f y. (\x. f x) y = f y
  • !p. (?!x. p x) <=> (?x. p x) /\ (!x x'. p x /\ p x' ==> x = x')
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • (?!) = (\p. (?) p /\ (!x y. p x /\ p y ==> x = y))
  • Contained Package bool-int
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page