Entry
Value
Name
EXISTS_UNIQUE_ALT
Conclusion
!p. (?!x. p x) <=> (?x. !y. p y <=> x = y)
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!a. ?x. x = a
!x. x = x
!t. F /\ t <=> F
!t. T /\ t <=> t
!t. t /\ F <=> F
!t. t /\ T <=> t
!t. t /\ t <=> t
!f y. (\x. f x) y = f y
!p. (?!x. p x) <=> (?x. p x) /\ (!x x'. p x /\ p x' ==> x = x')
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
(?) = (\p. !q. (!x. p x ==> q) ==> q)
(?!) = (\p. (?) p /\ (!x y. p x /\ p y ==> x = y))
Contained Package
bool-int
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page