Entry |
Value |
Name |
FORALL_UNWIND_THM1 |
Conclusion |
!p a. (!x. a = x ==> p x) <=> p a |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> t!p a. (!x. x = a ==> p x) <=> p aF <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T)) |
Contained Package |
bool-int |
Comment |
Standard HOL library retrieved from OpenTheory |