Entry Value
Name FORALL_UNWIND_THM1
Conclusion !p a. (!x. a = x ==> p x) <=> p a
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !p a. (!x. x = a ==> p x) <=> p a
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package bool-int
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page