Entry |
Value |
Name |
WLOG_RELATION |
Conclusion |
!r p.
(!x y. p x y ==> p y x) /\
(!x y. r x y \/ r y x) /\
(!x y. r x y ==> p x y)
==> (!x y. p x y) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!p q. (!x. p x ==> q x) ==> (!x. p x) ==> (!x. q x)T <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T)) |
Contained Package |
bool-int |
Comment |
Standard HOL library retrieved from OpenTheory |