Entry Value
Name WLOG_RELATION
Conclusion !r p. (!x y. p x y ==> p y x) /\ (!x y. r x y \/ r y x) /\ (!x y. r x y ==> p x y) ==> (!x y. p x y)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !p q. (!x. p x ==> q x) ==> (!x. p x) ==> (!x. q x)
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • Contained Package bool-int
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page