Entry
Value
Name
EQ_IMP
Conclusion
!a b. (a <=> b) ==> a ==> b
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
bool-int
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page