Entry
Value
Name
UNWIND_THM2
Conclusion
!p a. (?x. x = a /\ p x) <=> p a
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!p a. (?x. a = x /\ p x) <=> p a
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
(?) = (\p. !q. (!x. p x ==> q) ==> q)
Contained Package
bool-int
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page