Entry Value
Name LEFT_OR_EXISTS_THM
Conclusion !p q. (?x. p x) \/ q <=> (?x. p x \/ q)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package bool-int
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page