Theorems |
EXISTS_FINITE_SUBSET_IMAGE : !p f s.
(?t. FINITE t /\ t SUBSET IMAGE f s /\ p t) <=>
(?t. FINITE t /\ t SUBSET s /\ p (IMAGE f t))EXISTS_FINITE_SUBSET_IMAGE_INJ : !p f s.
(?t. FINITE t /\ t SUBSET IMAGE f s /\ p t) <=>
(?t. FINITE t /\
t SUBSET s /\
(!x y. x IN t /\ y IN t /\ f x = f y ==> x = y) /\
p (IMAGE f t))FINITE_BOOL : FINITE UNIVFINITE_CROSS : !s t. FINITE s /\ FINITE t ==> FINITE (s CROSS t)FINITE_CROSS_EQ : !s t. FINITE (s CROSS t) <=> s = {} \/ t = {} \/ FINITE s /\ FINITE tFINITE_DELETE : !s x. FINITE (s DELETE x) <=> FINITE sFINITE_DELETE_IMP : !s x. FINITE s ==> FINITE (s DELETE x)FINITE_DIFF : !s t. FINITE s ==> FINITE (s DIFF t)FINITE_FINITE_PREIMAGE : !f t.
FINITE t /\ (!y. y IN t ==> FINITE {x | f x = y})
==> FINITE {x | f x IN t}FINITE_FINITE_PREIMAGE_GENERAL : !f s t.
FINITE t /\ (!y. y IN t ==> FINITE {x | x IN s /\ f x = y})
==> FINITE {x | x IN s /\ f x IN t}FINITE_FINITE_UNIONS : !s. FINITE s ==> (FINITE (UNIONS s) <=> (!t. t IN s ==> FINITE t))FINITE_FUNSPACE : !d s t.
FINITE s /\ FINITE t
==> FINITE {f | (!x. x IN s ==> f x IN t) /\ (!x. ~(x IN s) ==> f x = d)}FINITE_IMAGE : !f s. FINITE s ==> FINITE (IMAGE f s)FINITE_IMAGE_EXPAND : !f s. FINITE s ==> FINITE {y | ?x. x IN s /\ y = f x}FINITE_IMAGE_INJ : !f A. (!x y. f x = f y ==> x = y) /\ FINITE A ==> FINITE {x | f x IN A}FINITE_IMAGE_INJ_EQ : !f s.
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> (FINITE (IMAGE f s) <=> FINITE s)FINITE_IMAGE_INJ_GENERAL : !f t s.
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ FINITE t
==> FINITE {x | x IN s /\ f x IN t}FINITE_INDUCT_STRONG : !p. p {} /\ (!x s. p s /\ ~(x IN s) /\ FINITE s ==> p (x INSERT s))
==> (!s. FINITE s ==> p s)FINITE_INSERT : !s x. FINITE (x INSERT s) <=> FINITE sFINITE_INTER : !s t. FINITE s \/ FINITE t ==> FINITE (s INTER t)FINITE_NUMSEG_LE : !n. FINITE {m | m <= n}FINITE_NUMSEG_LT : !n. FINITE {m | m < n}FINITE_POWERSET : !s. FINITE s ==> FINITE {t | t SUBSET s}FINITE_PRODUCT : !s t. FINITE s /\ FINITE t ==> FINITE {x,y | x IN s /\ y IN t}FINITE_PRODUCT_DEPENDENT : !f s t.
FINITE s /\ (!x. x IN s ==> FINITE (t x))
==> FINITE {f x y | x IN s /\ y IN t x}FINITE_RESTRICT : !s p. FINITE s ==> FINITE {x | x IN s /\ p x}FINITE_SING : !a. FINITE {a}FINITE_SUBSET : !s t. FINITE t /\ s SUBSET t ==> FINITE sFINITE_SUBSET_IMAGE : !f s t.
FINITE t /\ t SUBSET IMAGE f s <=>
(?s'. FINITE s' /\ s' SUBSET s /\ t = IMAGE f s')FINITE_SUBSET_IMAGE_IMP : !f s t.
FINITE t /\ t SUBSET IMAGE f s
==> (?s'. FINITE s' /\ s' SUBSET s /\ t SUBSET IMAGE f s')FINITE_TRANSITIVITY_CHAIN : !r s.
FINITE s /\
(!x. ~r x x) /\
(!x y z. r x y /\ r y z ==> r x z) /\
(!x. x IN s ==> (?y. y IN s /\ r x y))
==> s = {}FINITE_UNION : !s t. FINITE (s UNION t) <=> FINITE s /\ FINITE tFINITE_UNIONS : !s. FINITE (UNIONS s) <=> FINITE s /\ (!t. t IN s ==> FINITE t)FINITE_UNION_IMP : !s t. FINITE s /\ FINITE t ==> FINITE (s UNION t)FORALL_FINITE_SUBSET_IMAGE : !p f s.
(!t. FINITE t /\ t SUBSET IMAGE f s ==> p t) <=>
(!t. FINITE t /\ t SUBSET s ==> p (IMAGE f t))FORALL_FINITE_SUBSET_IMAGE_INJ : !p f s.
(!t. FINITE t /\ t SUBSET IMAGE f s ==> p t) <=>
(!t. FINITE t /\
t SUBSET s /\
(!x y. x IN t /\ y IN t /\ f x = f y ==> x = y)
==> p (IMAGE f t))INFINITE_DIFF_FINITE : !s t. INFINITE s /\ FINITE t ==> INFINITE (s DIFF t)INFINITE_ENUMERATE : !s. INFINITE s ==> (?r. (!m n. m < n ==> r m < r n) /\ IMAGE r UNIV = s)INFINITE_IMAGE_INJ : !f s.
INFINITE s /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> INFINITE (IMAGE f s)INFINITE_IMAGE_INJ_EQ : !f. (!x y. f x = f y ==> x = y) ==> (!s. INFINITE (IMAGE f s) <=> INFINITE s)INFINITE_NONEMPTY : !s. INFINITE s ==> ~(s = {})INFINITE_SUPERSET : !s t. INFINITE s /\ s SUBSET t ==> INFINITE tUNIONS_MAXIMAL_SETS : !f. FINITE f
==> UNIONS {t | t IN f /\ (!u. u IN f ==> ~(t PSUBSET u))} = UNIONS fnum_FINITE : !s. FINITE s <=> (?a. !x. x IN s ==> x <= a)num_FINITE_AVOID : !s. FINITE s ==> (?a. ~(a IN s))num_INFINITE : INFINITE UNIV |