Entry | Value |
---|---|
Name | INFINITE_IMAGE_INJ |
Conclusion | !f s. INFINITE s /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> INFINITE (IMAGE f s) |
Constructive Proof | No |
Axiom | !t. t \/ ~t (\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) (\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. e = (\f. (\c. c) = (\c. c))) (\g. (\h i. (\j k. (\l. l j k) = (\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c)))) h i <=> h) (d g) (d ((@) d)))) |
Classical Lemmas | |
Constructive Lemmas | |
Contained Package | set-finite-thm |
Comment | Standard HOL library retrieved from OpenTheory |