Entry | Value |
---|---|
Name | EXISTS_FINITE_SUBSET_IMAGE_INJ |
Conclusion | !p f s. (?t. FINITE t /\ t SUBSET IMAGE f s /\ p t) <=> (?t. FINITE t /\ t SUBSET s /\ (!x y. x IN t /\ y IN t /\ f x = f y ==> x = y) /\ p (IMAGE f t)) |
Constructive Proof | No |
Axiom | !t. t \/ ~t (\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) (\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. e = (\f. (\c. c) = (\c. c))) (\g. (\h i. (\j k. (\l. l j k) = (\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c)))) h i <=> h) (d g) (d ((@) d)))) |
Classical Lemmas | |
Constructive Lemmas | |
Contained Package | set-finite-thm |
Comment | Standard HOL library retrieved from OpenTheory |