Entry | Value |
---|---|
Name | FINITE_SUBSET_IMAGE_IMP |
Conclusion | !f s t. FINITE t /\ t SUBSET IMAGE f s ==> (?s'. FINITE s' /\ s' SUBSET s /\ t SUBSET IMAGE f s') |
Constructive Proof | No |
Axiom | !t. t \/ ~t (\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) (\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. e = (\f. (\c. c) = (\c. c))) (\g. (\h i. (\j k. (\l. l j k) = (\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c)))) h i <=> h) (d g) (d ((@) d)))) |
Classical Lemmas | |
Constructive Lemmas | |
Contained Package | set-finite-thm |
Comment | Standard HOL library retrieved from OpenTheory |