Entry Value
Package Name relation-thm
Count 25
Theorems
  • big_interr : !s x y. big_interr s x y <=> (!r. r IN s ==> r x y)
  • big_unionr : !s x y. big_unionr s x y <=> (?r. r IN s /\ r x y)
  • emptyr : !x y. ~emptyr x y
  • interr : !r s x y. interr r s x y <=> r x y /\ s x y
  • irreflexive : !r x. irreflexive r ==> ~r x x
  • irreflexive_emptyr : irreflexive emptyr
  • reflexive : !r x. reflexive r ==> r x x
  • reflexive_univr : reflexive univr
  • relation_extension_imp : !r s. (!x y. r x y <=> s x y) ==> r = s
  • relation_to_set : !r x y. x,y IN relation_to_set r <=> r x y
  • relation_to_set_inj : !r s. relation_to_set r = relation_to_set s ==> r = s
  • relation_to_set_to_relation : !r. set_to_relation (relation_to_set r) = r
  • set_to_relation_to_set : !s. relation_to_set (set_to_relation s) = s
  • subrelation : !r s. subrelation r s <=> (!x y. r x y ==> s x y)
  • subrelation_antisym : !r s. subrelation r s /\ subrelation s r ==> r = s
  • subrelation_big_interr : !r s. subrelation r (big_interr s) <=> (!t. t IN s ==> subrelation r t)
  • subrelation_refl : !r. subrelation r r
  • subrelation_trans : !r s t. subrelation r s /\ subrelation s t ==> subrelation r t
  • transitive_closure_smallest : !r s. subrelation r s /\ transitive s ==> subrelation (transitive_closure r) s
  • transitive_closure_subrelation : !r. subrelation r (transitive_closure r)
  • transitive_closure_transitive : !r. transitive (transitive_closure r)
  • transitive_emptyr : transitive emptyr
  • transitive_univr : transitive univr
  • unionr : !r s x y. unionr r s x y <=> r x y \/ s x y
  • univr : !x y. univr x y
  • Back to main package page