Theorems |
big_interr : !s x y. big_interr s x y <=> (!r. r IN s ==> r x y)big_unionr : !s x y. big_unionr s x y <=> (?r. r IN s /\ r x y)emptyr : !x y. ~emptyr x yinterr : !r s x y. interr r s x y <=> r x y /\ s x yirreflexive : !r x. irreflexive r ==> ~r x xirreflexive_emptyr : irreflexive emptyrreflexive : !r x. reflexive r ==> r x xreflexive_univr : reflexive univrrelation_extension_imp : !r s. (!x y. r x y <=> s x y) ==> r = srelation_to_set : !r x y. x,y IN relation_to_set r <=> r x yrelation_to_set_inj : !r s. relation_to_set r = relation_to_set s ==> r = srelation_to_set_to_relation : !r. set_to_relation (relation_to_set r) = rset_to_relation_to_set : !s. relation_to_set (set_to_relation s) = ssubrelation : !r s. subrelation r s <=> (!x y. r x y ==> s x y)subrelation_antisym : !r s. subrelation r s /\ subrelation s r ==> r = ssubrelation_big_interr : !r s. subrelation r (big_interr s) <=> (!t. t IN s ==> subrelation r t)subrelation_refl : !r. subrelation r rsubrelation_trans : !r s t. subrelation r s /\ subrelation s t ==> subrelation r ttransitive_closure_smallest : !r s.
subrelation r s /\ transitive s ==> subrelation (transitive_closure r) stransitive_closure_subrelation : !r. subrelation r (transitive_closure r)transitive_closure_transitive : !r. transitive (transitive_closure r)transitive_emptyr : transitive emptyrtransitive_univr : transitive univrunionr : !r s x y. unionr r s x y <=> r x y \/ s x yunivr : !x y. univr x y |