Entry Value
Name subrelation_trans
Conclusion !r s t. subrelation r s /\ subrelation s t ==> subrelation r t
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !t. F /\ t <=> F
  • !t. T /\ t <=> t
  • !t. t /\ F <=> F
  • !t. t /\ T <=> t
  • !t. t /\ t <=> t
  • !r s. subrelation r s <=> relation_to_set r SUBSET relation_to_set s
  • !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u
  • !s t. s SUBSET t <=> (!x. x IN s ==> x IN t)
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package relation-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page