Entry |
Value |
Name |
subrelation_trans |
Conclusion |
!r s t. subrelation r s /\ subrelation s t ==> subrelation r t |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!t. F /\ t <=> F!t. T /\ t <=> t!t. t /\ F <=> F!t. t /\ T <=> t!t. t /\ t <=> t!r s. subrelation r s <=> relation_to_set r SUBSET relation_to_set s!s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u!s t. s SUBSET t <=> (!x. x IN s ==> x IN t)F <=> (!p. p)T <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q) |
Contained Package |
relation-thm |
Comment |
Standard HOL library retrieved from OpenTheory |