Entry
Value
Name
reflexive
Conclusion
!r x. reflexive r ==> r x x
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!r. reflexive r <=> (!x. r x x)
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
relation-thm
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page