Entry Value
Name relation_to_set_inj
Conclusion !r s. relation_to_set r = relation_to_set s ==> r = s
Constructive Proof No
Axiom
!t. t \/ ~t 
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) 
(\a. a = (\b. (\c. c) = (\c. c)))
(\d. (\e. e = (\f. (\c. c) = (\c. c)))
     (\g. (\h i.
               (\j k.
                    (\l. l j k) =
                    (\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c))))
               h
               i <=>
               h)
          (d g)
          (d ((@) d))))
Classical Lemmas
  • !a b a' b'. a,b = a',b' <=> a = a' /\ b = b'
  • !t1 t2. ~(t1 /\ t2) <=> ~t1 \/ ~t2
  • !t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2
  • !t1 t2. ~(t1 \/ t2) <=> ~t1 /\ ~t2
  • !t. ~ ~t <=> t
  • !t. (t <=> T) \/ (t <=> F)
  • !p q. (!x. p x \/ q) <=> (!x. p x) \/ q
  • !p q. (!x. p x) \/ q <=> (!x. p x \/ q)
  • !p. (?x. ~p x) <=> ~(!x. p x)
  • !p. ~(!x. p x) <=> (?x. ~p x)
  • !p. ~(?x. p x) <=> (!x. ~p x)
  • !r x y. x,y IN relation_to_set r <=> r x y
  • !r. set_to_relation (relation_to_set r) = r
  • Constructive Lemmas
  • T
  • !x y. x = y <=> y = x
  • !x y. x = y ==> y = x
  • !a b a' b'. a,b = a',b' <=> a = a' /\ b = b'
  • !x. x = x
  • !t1 t2 t3. (t1 /\ t2) /\ t3 <=> t1 /\ t2 /\ t3
  • !t1 t2 t3. (t1 \/ t2) \/ t3 <=> t1 \/ t2 \/ t3
  • !t1 t2. ~(t1 /\ t2) <=> ~t1 \/ ~t2
  • !t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2
  • !t1 t2. ~(t1 \/ t2) <=> ~t1 /\ ~t2
  • !t1 t2. t1 \/ t2 <=> t2 \/ t1
  • !p q. p /\ (?x. q x) <=> (?x. p /\ q x)
  • !t. (!x. t) <=> t
  • !t. ~ ~t <=> t
  • !t. F /\ t <=> F
  • !t. T /\ t <=> t
  • !t. t /\ F <=> F
  • !t. t /\ T <=> t
  • !t. t /\ t <=> t
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. F \/ t <=> t
  • !t. T \/ t <=> T
  • !t. t \/ F <=> t
  • !t. t \/ T <=> T
  • !t. t \/ t <=> t
  • !t. t ==> t
  • !t. (t <=> T) \/ (t <=> F)
  • !f y. (\x. f x) y = f y
  • !f g. (!x. f x = g x) <=> f = g
  • !f g. (!x. f x = g x) ==> f = g
  • !t. (\x. t x) = t
  • !p x. x IN GSPEC p <=> p x
  • !p x. p x ==> p ((@) p)
  • !p q. (!x. p x \/ q) <=> (!x. p x) \/ q
  • !p q. (?x. p x /\ q) <=> (?x. p x) /\ q
  • !p q. (?x. p x) /\ q <=> (?x. p x /\ q)
  • !p q. (!x. p x) \/ q <=> (!x. p x \/ q)
  • !p q. (?x. p x) \/ q <=> (?x. p x \/ q)
  • !p q. (!x. p x /\ q x) <=> (!x. p x) /\ (!x. q x)
  • !p. (?x. ~p x) <=> ~(!x. p x)
  • !p. ~(!x. p x) <=> (?x. ~p x)
  • !p. ~(?x. p x) <=> (!x. ~p x)
  • !r x y. x,y IN relation_to_set r <=> r x y
  • !r s. (!x y. r x y <=> s x y) ==> r = s
  • !r. (!x. ?y. r x y) <=> (?f. !x. r x (f x))
  • !r. set_to_relation (relation_to_set r) = r
  • !r. relation_to_set r = {x,y | r x y}
  • !s x y. set_to_relation s x y <=> x,y IN s
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • (?) = (\p. p ((@) p))
  • (?!) = (\p. (?) p /\ (!x y. p x /\ p y ==> x = y))
  • Contained Package relation-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page