Name |
Conclusion |
Link |
natural-divides_1 |
!a. divides a 0 |
link to proof |
natural-divides_2 |
!a. divides a a |
link to proof |
natural-divides_3 |
!a. divides 1 a |
link to proof |
natural-divides_4 |
!a. gcd 0 a = a |
link to proof |
natural-divides_5 |
!a. gcd a 0 = a |
link to proof |
natural-divides_6 |
!a. gcd a a = a |
link to proof |
natural-divides_7 |
!a. lcm 0 a = 0 |
link to proof |
natural-divides_8 |
!a. lcm a 0 = 0 |
link to proof |
natural-divides_9 |
!a. lcm a a = a |
link to proof |
natural-divides_10 |
!b. FST (egcd 0 b) = b |
link to proof |
natural-divides_11 |
!a. lcm a 1 = a |
link to proof |
natural-divides_12 |
!a. lcm 1 a = a |
link to proof |
natural-divides_13 |
!a b. divides a (lcm a b) |
link to proof |
natural-divides_14 |
!a b. divides b (lcm a b) |
link to proof |
natural-divides_15 |
!a b. divides (gcd a b) a |
link to proof |
natural-divides_16 |
!a b. divides (gcd a b) b |
link to proof |
natural-divides_17 |
!a. divides 0 a <=> a = 0 |
link to proof |
natural-divides_18 |
!a. gcd a 1 = 1 |
link to proof |
natural-divides_19 |
!a. gcd 1 a = 1 |
link to proof |
natural-divides_20 |
!a b. divides (FST (egcd a b)) a |
link to proof |
natural-divides_21 |
!a b. divides (FST (egcd a b)) b |
link to proof |
natural-divides_22 |
!a. divides 2 a <=> EVEN a |
link to proof |
natural-divides_23 |
!a b. gcd a b = gcd b a |
link to proof |
natural-divides_24 |
!a b. lcm a b = lcm b a |
link to proof |
natural-divides_25 |
!a b. a = b ==> divides a b |
link to proof |
natural-divides_26 |
!a. divides a 1 <=> a = 1 |
link to proof |
natural-divides_27 |
!a b. FST (egcd a b) = gcd a b |
link to proof |
natural-divides_28 |
!a. egcd a 0 = a,1,0 |
link to proof |
natural-divides_29 |
!a b. gcd a b = a <=> divides a b |
link to proof |
natural-divides_30 |
!a b. gcd b a = a <=> divides a b |
link to proof |
natural-divides_31 |
!a b. lcm a b = a <=> divides b a |
link to proof |
natural-divides_32 |
!a b. lcm b a = a <=> divides b a |
link to proof |
natural-divides_33 |
!a b. gcd a (a + b) = gcd a b |
link to proof |
natural-divides_34 |
!a b. gcd a (b + a) = gcd a b |
link to proof |
natural-divides_35 |
!a b. gcd (a + b) b = gcd a b |
link to proof |
natural-divides_36 |
!a b. gcd (b + a) b = gcd a b |
link to proof |
natural-divides_37 |
!a b c. divides a b ==> divides a (b * c) |
link to proof |
natural-divides_38 |
!a b c. divides a b ==> divides a (lcm b c) |
link to proof |
natural-divides_39 |
!a b c. divides a b ==> divides a (lcm c b) |
link to proof |
natural-divides_40 |
!a b c. divides a c ==> divides a (b * c) |
link to proof |
natural-divides_41 |
!a b c. divides b a ==> divides (gcd b c) a |
link to proof |
natural-divides_42 |
!a b c. divides b a ==> divides (gcd c b) a |
link to proof |
natural-divides_43 |
!a b c. divides (a * b) c ==> divides a c |
link to proof |
natural-divides_44 |
!a b c. divides (a * b) c ==> divides b c |
link to proof |
natural-divides_45 |
!a b. divides a b <=> (?c. c * a = b) |
link to proof |
natural-divides_46 |
!b. egcd 1 b = 1,1,0 |
link to proof |
natural-divides_47 |
!a b. lcm a b * gcd a b = a * b |
link to proof |
natural-divides_48 |
!a b. divides a b /\ divides b a ==> a = b |
link to proof |
natural-divides_49 |
!a b. ~(b = 0) /\ divides a b ==> a <= b |
link to proof |
natural-divides_50 |
!a b c. gcd (gcd a b) c = gcd a (gcd b c) |
link to proof |
natural-divides_51 |
!a b c. lcm (lcm a b) c = lcm a (lcm b c) |
link to proof |
natural-divides_52 |
!a b c. divides a b /\ divides b c ==> divides a c |
link to proof |
natural-divides_53 |
!a b. (!c. divides b c ==> divides a c) <=> divides a b |
link to proof |
natural-divides_54 |
!a b. (!c. divides c a ==> divides c b) <=> divides a b |
link to proof |
natural-divides_55 |
!a b. (!c. divides b c ==> divides a c) ==> divides a b |
link to proof |
natural-divides_56 |
!a b. (!c. divides c a ==> divides c b) ==> divides a b |
link to proof |
natural-divides_57 |
!a b. a <= b ==> gcd a (b - a) = gcd a b |
link to proof |
natural-divides_58 |
!a b. b <= a ==> gcd (a - b) b = gcd a b |
link to proof |
natural-divides_59 |
!a b. gcd a b = 0 <=> a = 0 /\ b = 0 |
link to proof |
natural-divides_60 |
!a b. lcm a b = 0 <=> a = 0 \/ b = 0 |
link to proof |
natural-divides_61 |
!a b. ~(b = 0) /\ b <= a ==> divides b (FACT a) |
link to proof |
natural-divides_62 |
!a b s t. divides (gcd a b) (dist (s * a) (t * b)) |
link to proof |
natural-divides_63 |
!a b. ?s t. dist (s * a) (t * b) = gcd a b |
link to proof |
natural-divides_64 |
!a b. ~(a = 0) ==> (divides a b <=> b MOD a = 0) |
link to proof |
natural-divides_65 |
!a b. ~(a = 0) ==> gcd a (b MOD a) = gcd a b |
link to proof |
natural-divides_66 |
!a b c. divides c (gcd a b) <=> divides c a /\ divides c b |
link to proof |
natural-divides_67 |
!a b c. divides (lcm a b) c <=> divides a c /\ divides b c |
link to proof |
natural-divides_68 |
!a b c. gcd a (lcm b c) = lcm (gcd a b) (gcd a c) |
link to proof |
natural-divides_69 |
!a b c. lcm a (gcd b c) = gcd (lcm a b) (lcm a c) |
link to proof |
natural-divides_70 |
!a b c. gcd (lcm b c) a = lcm (gcd b a) (gcd c a) |
link to proof |
natural-divides_71 |
!a b c. lcm (gcd b c) a = gcd (lcm b a) (lcm c a) |
link to proof |
natural-divides_72 |
!a b c. divides (gcd a (b * c)) (gcd a b * gcd a c) |
link to proof |
natural-divides_73 |
!a b c. gcd (a * b) (a * c) = a * gcd b c |
link to proof |
natural-divides_74 |
!a b c. gcd (b * a) (c * a) = gcd b c * a |
link to proof |
natural-divides_75 |
!a b c. lcm (a * b) (a * c) = a * lcm b c |
link to proof |
natural-divides_76 |
!a b c. lcm (b * a) (c * a) = lcm b c * a |
link to proof |
natural-divides_77 |
!a b c. divides a b /\ divides a c ==> divides a (b + c) |
link to proof |
natural-divides_78 |
!a b c. divides a c /\ divides b c ==> divides (lcm a b) c |
link to proof |
natural-divides_79 |
!a b c. divides c a /\ divides c b ==> divides c (dist a b) |
link to proof |
natural-divides_80 |
!a b c. divides c a /\ divides c b ==> divides c (gcd a b) |
link to proof |
natural-divides_81 |
!a. divides a 2 <=> a = 1 \/ a = 2 |
link to proof |
natural-divides_82 |
!a. divides a 3 <=> a = 1 \/ a = 3 |
link to proof |
natural-divides_83 |
!a b. gcd a b = 1 ==> gcd (a * a) b = 1 |
link to proof |
natural-divides_84 |
!a b. gcd b a = 1 ==> gcd b (a * a) = 1 |
link to proof |
natural-divides_85 |
!a b. gcd b (a * a) = 1 <=> gcd b a = 1 |
link to proof |
natural-divides_86 |
!a b. gcd (a * a) b = 1 <=> gcd a b = 1 |
link to proof |
natural-divides_87 |
!a b. divides a b <=> (if a = 0 then b = 0 else b MOD a = 0) |
link to proof |
natural-divides_88 |
!a b. ~(a = 0) ==> (divides a b <=> b DIV a * a = b) |
link to proof |
natural-divides_89 |
!a b. lcm a b = 1 <=> a = 1 /\ b = 1 |
link to proof |
natural-divides_90 |
!a b c. divides (a * b) (a * c) <=> a = 0 \/ divides b c |
link to proof |
natural-divides_91 |
!a b c. divides (b * a) (c * a) <=> a = 0 \/ divides b c |
link to proof |
natural-divides_92 |
!a b c. gcd b (a * c) = 1 ==> gcd b c = 1 |
link to proof |
natural-divides_93 |
!a b c. gcd b (c * a) = 1 ==> gcd b c = 1 |
link to proof |
natural-divides_94 |
!a b c. gcd (a * b) c = 1 ==> gcd b c = 1 |
link to proof |
natural-divides_95 |
!a b c. gcd (b * a) c = 1 ==> gcd b c = 1 |
link to proof |
natural-divides_96 |
!a b c. gcd a b = 1 ==> gcd a (b * c) = gcd a c |
link to proof |
natural-divides_97 |
!a b c. gcd a b = 1 ==> gcd a (c * b) = gcd a c |
link to proof |
natural-divides_98 |
!a b c. gcd b a = 1 ==> gcd (b * c) a = gcd c a |
link to proof |
natural-divides_99 |
!a b c. gcd b a = 1 ==> gcd (c * b) a = gcd c a |
link to proof |
natural-divides_100 |
!a b c d. divides a c /\ divides b d ==> divides (a * b) (c * d) |
link to proof |
natural-divides_101 |
!a b c. c <= b /\ divides a b /\ divides a c ==> divides a (b - c) |
link to proof |
natural-divides_102 |
!a. ~(a = 0) ==> egcd a 1 = 1,1,a - 1 |
link to proof |
natural-divides_103 |
!a b. ~(a = 0) ==> (?s t. t * b + gcd a b = s * a) |
link to proof |
natural-divides_104 |
!a b. ~(a = 0) ==> (?s t. t * b + gcd b a = s * a) |
link to proof |
natural-divides_105 |
!a b x y. x < a /\ y < b ==> chinese a b x y < a * b |
link to proof |
natural-divides_106 |
!a b s t. dist (s * a) (t * b) = 1 ==> gcd a b = 1 |
link to proof |
natural-divides_107 |
!a b. (!c. divides c a /\ divides c b ==> c = 1) ==> gcd a b = 1 |
link to proof |
natural-divides_108 |
!a b.
gcd a b =
(if a = 0 then b else if a <= b then gcd a (b - a) else gcd b a) |
link to proof |
natural-divides_109 |
!a b c. gcd b c = 1 /\ divides b a /\ divides c a ==> divides (b * c) a |
link to proof |
natural-divides_110 |
!a b. 1 < b /\ gcd a b = 1 ==> (?s. (s * a) MOD b = 1) |
link to proof |
natural-divides_111 |
!a b.
?g. divides g a /\
divides g b /\
(!c. divides c a /\ divides c b ==> divides c g) |
link to proof |
natural-divides_112 |
!a b c. gcd a (b * c) = 1 <=> gcd a b = 1 /\ gcd a c = 1 |
link to proof |
natural-divides_113 |
!a b c. gcd (b * c) a = 1 <=> gcd b a = 1 /\ gcd c a = 1 |
link to proof |
natural-divides_114 |
!a b c. gcd a b = 1 /\ gcd a c = 1 ==> gcd a (b * c) = 1 |
link to proof |
natural-divides_115 |
!a b c. gcd b a = 1 /\ gcd c a = 1 ==> gcd (b * c) a = 1 |
link to proof |
natural-divides_116 |
!ap b. let a = ap + 1 in let g,s,t = egcd a b in t < a |
link to proof |
natural-divides_117 |
!a b s t g. s * a + g = t * b /\ divides g a /\ divides g b ==> gcd a b = g |
link to proof |
natural-divides_118 |
!a b s t g. t * b + g = s * a /\ divides g a /\ divides g b ==> gcd a b = g |
link to proof |
natural-divides_119 |
!a b s t g.
dist (s * a) (t * b) = g /\ divides g a /\ divides g b ==> gcd a b = g |
link to proof |
natural-divides_120 |
!ap b. let a = ap + 1 in let g,s,t = egcd a b in s < MAX b 2 |
link to proof |
natural-divides_121 |
!a b l.
divides a l /\
divides b l /\
(!c. divides a c /\ divides b c ==> divides l c)
==> lcm a b = l |
link to proof |
natural-divides_122 |
!a b g.
divides g a /\
divides g b /\
(!c. divides c a /\ divides c b ==> divides c g)
==> gcd a b = g |
link to proof |
natural-divides_123 |
!a b g s t. ~(a = 0) /\ egcd a b = g,s,t ==> t * b + g = s * a |
link to proof |
natural-divides_124 |
!ap b. let a = ap + 1 in let g,s,t = egcd a b in t * b + g = s * a |
link to proof |
natural-divides_125 |
!a b g s t. ~(a = 0) /\ egcd a b = g,s,t ==> s < MAX b 2 /\ t < a |
link to proof |
natural-divides_126 |
!a b. ~(a = 0) ==> (?s t. egcd a b = gcd a b,s,t /\ t * b + gcd a b = s * a) |
link to proof |
natural-divides_127 |
!p. (!n. p 0 n) /\
(!m n. n < m /\ p n m ==> p m n) /\
(!m n. p m n ==> p m (n + m))
==> (!m n. p m n) |
link to proof |
natural-divides_128 |
!a b x y n.
gcd a b = 1 /\ x < a /\ y < b /\ chinese a b x y = n
==> n MOD a = x /\ n MOD b = y |
link to proof |
natural-divides_129 |
!ap bp xp yp.
let aq = ap + 1 in
let bq = bp + 1 in
let g = FST (egcd aq bq) in
let a = aq DIV g in
let b = bq DIV g in
let x = xp MOD a in let y = yp MOD b in chinese a b x y < a * b |
link to proof |
natural-divides_130 |
!ap bp xp yp.
let aq = ap + 1 in
let bq = bp + 1 in
let g = FST (egcd aq bq) in
let a = aq DIV g in
let b = bq DIV g in
let x = xp MOD a in let y = yp MOD b in chinese a b x y MOD a = x |
link to proof |
natural-divides_131 |
!ap bp xp yp.
let aq = ap + 1 in
let bq = bp + 1 in
let g = FST (egcd aq bq) in
let a = aq DIV g in
let b = bq DIV g in
let x = xp MOD a in let y = yp MOD b in chinese a b x y MOD b = y |
link to proof |
natural-divides_132 |
!a b x y.
chinese a b x y =
(let g,s,t = egcd a b in (x * (a - t) * b + y * s * a) MOD (a * b)) |
link to proof |
natural-divides_133 |
!a b.
chinese a b =
(let g,s,t = egcd a b in
let ab = a * b in
let sa = s * a in let tb = (a - t) * b in \x y. (x * tb + y * sa) MOD ab) |
link to proof |
natural-divides_134 |
!p. p 0 0 /\
(!a b. gcd a b = 1 ==> p a b) /\
(!c a b. ~(c = 0) /\ p a b ==> p (c * a) (c * b))
==> (!a b. p a b) |
link to proof |
natural-divides_135 |
!p. (!a. p a 0) /\
(!a b. ~(b = 0) /\ divides b a ==> p a b) /\
(!a b c. ~(b = 0) /\ c = a MOD b /\ ~(c = 0) /\ p c (b MOD c) ==> p a b)
==> (!a b. p a b) |
link to proof |
natural-divides_136 |
!a b.
egcd a b =
(if b = 0
then a,1,0
else let c = a MOD b in
if c = 0
then b,1,a DIV b - 1
else let g,s,t = egcd c (b MOD c) in
let u = s + b DIV c * t in g,u,t + a DIV b * u) |
link to proof |