Entry |
Value |
Name |
natural-divides_136 |
Conclusion |
!a b.
egcd a b =
(if b = 0
then a,1,0
else let c = a MOD b in
if c = 0
then b,1,a DIV b - 1
else let g,s,t = egcd c (b MOD c) in
let u = s + b DIV c * t in g,u,t + a DIV b * u) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!a b.
egcd a b =
(if b = 0
then a,1,0
else let c = a MOD b in
if c = 0
then b,1,a DIV b - 1
else let g,s,t = egcd c (b MOD c) in
let u = s + b DIV c * t in g,u,t + a DIV b * u)T <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T))NUMERAL = (\n. n) |
Contained Package |
natural-divides |
Comment |
Natural-divides package from OpenTheory. |