Entry Value
Name natural-divides_136
Conclusion !a b. egcd a b = (if b = 0 then a,1,0 else let c = a MOD b in if c = 0 then b,1,a DIV b - 1 else let g,s,t = egcd c (b MOD c) in let u = s + b DIV c * t in g,u,t + a DIV b * u)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !t. (!x. t) <=> t
  • !f y. (\x. f x) y = f y
  • !a b. egcd a b = (if b = 0 then a,1,0 else let c = a MOD b in if c = 0 then b,1,a DIV b - 1 else let g,s,t = egcd c (b MOD c) in let u = s + b DIV c * t in g,u,t + a DIV b * u)
  • T <=> (\p. p) = (\p. p)
  • LET_END = (\t. t)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • LET = (\f. f)
  • (!) = (\p. p = (\x. T))
  • NUMERAL = (\n. n)
  • Contained Package natural-divides
    Comment Natural-divides package from OpenTheory.
    Back to main package pageBack to contained package page