Entry |
Value |
Name |
natural-divides_132 |
Conclusion |
!a b x y.
chinese a b x y =
(let g,s,t = egcd a b in (x * (a - t) * b + y * s * a) MOD (a * b)) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!a b x y.
chinese a b x y =
(let g,s,t = egcd a b in (x * (a - t) * b + y * s * a) MOD (a * b))T <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T)) |
Contained Package |
natural-divides |
Comment |
Natural-divides package from OpenTheory. |