Entry Value
Name natural-divides_80
Conclusion !a b c. divides c a /\ divides c b ==> divides c (gcd a b)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !p q. (!x. p x /\ q x) <=> (!x. p x) /\ (!x. q x)
  • !a b c. divides c a /\ divides c b ==> divides c (gcd a b)
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package natural-divides
    Comment Natural-divides package from OpenTheory.
    Back to main package pageBack to contained package page