Theorems |
CC_EQ_I : !f. C (C f) = fC_THM : !f x y. C f x y = f y xFUNCTION_FACTORS_LEFT : !f g. (!x y. g x = g y ==> f x = f y) <=> (?h. f = h o g)FUNCTION_FACTORS_LEFT_GEN : !p f g.
(!x y. p x /\ p y /\ g x = g y ==> f x = f y) <=>
(?h. !x. p x ==> f x = h (g x))FUNCTION_FACTORS_RIGHT : !f g. (!x. ?y. g y = f x) <=> (?h. f = g o h)FUNCTION_FACTORS_RIGHT_GEN : !p f g. (!x. p x ==> (?y. g y = f x)) <=> (?h. !x. p x ==> f x = g (h x))I_O : !f. I o f = fI_THM : !x. I x = xK_THM : !x y. K x y = xO_I : !f. f o I = fSKX_EQ_I : !x. S K x = ISURJECTIVE_EXISTS_THM : !f. (!y. ?x. f x = y) <=> (!p. (?x. p (f x)) <=> (?y. p y))SURJECTIVE_FORALL_THM : !f. (!y. ?x. f x = y) <=> (!p. (!x. p (f x)) <=> (!y. p y))S_THM : !f g x. S f g x = f x (g x)W_THM : !f x. W f x = f x xo_ASSOC : !f g h. f o g o h = (f o g) o ho_ASSOC' : !f g h. (f o g) o h = f o g o ho_THM : !f g x. (f o g) x = f (g x) |