Entry Value
Name o_ASSOC
Conclusion !f g h. f o g o h = (f o g) o h
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x y. x = y ==> y = x
  • !x. x = x
  • !t. (!x. t) <=> t
  • !f y. (\x. f x) y = f y
  • !f g h. (f o g) o h = f o g o h
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (o) = (\f g x. f (g x))
  • Contained Package function-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page