Entry
Value
Name
o_ASSOC
Conclusion
!f g h. f o g o h = (f o g) o h
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!x y. x = y ==> y = x
!x. x = x
!t. (!x. t) <=> t
!f y. (\x. f x) y = f y
!f g h. (f o g) o h = f o g o h
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
(o) = (\f g x. f (g x))
Contained Package
function-thm
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page