Entry
Value
Name
K_THM
Conclusion
!x y. K x y = x
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!x. x = x
!t. (!x. t) <=> t
!f y. (\x. f x) y = f y
T <=> (\p. p) = (\p. p)
K = (\x y. x)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
function-thm
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page