Entry Value
Name wellfounded_irreflexive
Conclusion !r. WF r ==> irreflexive r
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !p q. (!x. p ==> q x) <=> p ==> (!x. q x)
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f y. (\x. f x) y = f y
  • !r. WF r <=> (!p. (?x. p x) ==> (?x. p x /\ (!y. r y x ==> ~p y)))
  • !r. irreflexive r <=> (!x. ~r x x)
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package relation-well-founded-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page