Theorems |
WF_EQ : !r. WF r <=> (!p. (?x. p x) <=> (?x. p x /\ (!y. r y x ==> ~p y)))WF_IND : !r. WF r <=> (!p. (!x. (!y. r y x ==> p y) ==> p x) ==> (!x. p x))WF_LEX : !r s. WF r /\ WF s ==> WF (\(x1,y1) (x2,y2). r x1 x2 \/ x1 = x2 /\ s y1 y2)WF_LEX_DEPENDENT : !r s.
WF r /\ (!a. WF (s a))
==> WF (\(x1,y1) (x2,y2). r x1 x2 \/ x1 = x2 /\ s x1 y1 y2)WF_MEASURE_GEN : !r m. WF r ==> WF (\x y. r (m x) (m y))WF_POINTWISE : !r s. WF r /\ WF s ==> WF (\(x1,y1) (x2,y2). r x1 x2 /\ s y1 y2)wellfounded_emptyr : WF emptyrwellfounded_irreflexive : !r. WF r ==> irreflexive rwellfounded_subrelation : !r s. subrelation r s /\ WF s ==> WF r |