Theorems |
LE_MAX : !m n p. m <= MAX n p <=> m <= n \/ m <= pLE_MAX1 : !m n. m <= MAX m nLE_MAX2 : !m n. n <= MAX m nLE_MIN : !m n p. m <= MIN n p <=> m <= n /\ m <= pLT_MAX : !m n p. m < MAX n p <=> m < n \/ m < pLT_MIN : !m n p. m < MIN n p <=> m < n /\ m < pMAX_COMM : !m n. MAX m n = MAX n mMAX_EQ_ZERO : !m n. MAX m n = 0 <=> m = 0 /\ n = 0MAX_L0 : !n. MAX 0 n = nMAX_LE : !m n p. MAX n p <= m <=> n <= m /\ p <= mMAX_LT : !m n p. MAX n p < m <=> n < m /\ p < mMAX_R0 : !n. MAX n 0 = nMAX_REFL : !n. MAX n n = nMAX_SUC : !m n. MAX (SUC m) (SUC n) = SUC (MAX m n)MINIMAL_EQ : !p n. p n /\ (!m. m < n ==> ~p m) ==> (minimal) p = nMINIMAL_T : (minimal n. T) = 0MIN_COMM : !m n. MIN m n = MIN n mMIN_L0 : !n. MIN 0 n = 0MIN_LE : !m n p. MIN n p <= m <=> n <= m \/ p <= mMIN_LE1 : !m n. MIN m n <= mMIN_LE2 : !m n. MIN m n <= nMIN_LT : !m n p. MIN n p < m <=> n < m \/ p < mMIN_R0 : !n. MIN n 0 = 0MIN_REFL : !n. MIN n n = nMIN_SUC : !m n. MIN (SUC m) (SUC n) = SUC (MIN m n) |