| Entry | Value |
|---|---|
| Name | MIN_L0 |
| Conclusion | !n. MIN 0 n = 0 |
| Constructive Proof | Yes |
| Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
(\a. a = (\b. (\c. c) = (\c. c)))
(\d. (\e. e = (\f. (\c. c) = (\c. c)))
(\g. (\h i.
(\j k.
(\l. l j k) =
(\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c))))
h
i <=>
h)
(d g)
(d ((@) d)))) |
| Classical Lemmas | N|A |
| Constructive Lemmas | |
| Contained Package | natural-order-min-max-thm |
| Comment | Standard HOL library retrieved from OpenTheory |