Theorems |
ALL_F : !l. ALL (\x. F) l <=> NULL lALL_IMP : !p q l. (!x. MEM x l /\ p x ==> q x) /\ ALL p l ==> ALL q lALL_MEM : !p l. (!x. MEM x l ==> p x) <=> ALL p lALL_MP : !p q l. ALL (\x. p x ==> q x) l /\ ALL p l ==> ALL q lALL_SET_OF_LIST : !p l. ALL p l <=> (!x. x IN set_of_list l ==> p x)ALL_T : !l. ALL (\x. T) lAND_ALL : !p q l. ALL (\x. p x /\ q x) l <=> ALL p l /\ ALL q lCARD_SET_OF_LIST_LE : !l. CARD (set_of_list l) <= LENGTH lEXISTS_EX : !p l. (?x. EX (p x) l) <=> EX (\y. ?x. p x y) lEX_IMP : !p q l. (!x. MEM x l /\ p x ==> q x) /\ EX p l ==> EX q lEX_MEM : !p l. (?x. MEM x l /\ p x) <=> EX p lEX_SET_OF_LIST : !p l. EX p l <=> (?x. x IN set_of_list l /\ p x)FINITE_SET_OF_LIST : !l. FINITE (set_of_list l)FORALL_ALL : !p l. (!x. ALL (p x) l) <=> ALL (\y. !x. p x y) lLENGTH_LIST_OF_SET : !s. FINITE s ==> LENGTH (list_of_set s) = CARD sMEM_LIST_OF_SET : !s. FINITE s ==> (!x. MEM x (list_of_set s) <=> x IN s)MEM_SET_OF_LIST : !l x. MEM x l <=> x IN set_of_list lNOT_ALL : !p l. ~ALL p l <=> EX (\x. ~p x) lNOT_ALL_NOT : !p l. ~ALL (\x. ~p x) l <=> EX p lNOT_EX : !p l. ~EX p l <=> ALL (\x. ~p x) lNOT_EX_NOT : !p l. ~EX (\x. ~p x) l <=> ALL p lNULL_SET_OF_LIST : !l. set_of_list l = {} <=> NULL lSET_OF_LIST_EQ_EMPTY : !l. set_of_list l = {} <=> l = []SET_OF_LIST_OF_SET : !s. FINITE s ==> set_of_list (list_of_set s) = s |