Entry Value
Name NOT_EX_NOT
Conclusion !p l. ~EX (\x. ~p x) l <=> ALL p l
Constructive Proof No
Axiom
!t. t \/ ~t 
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
Classical Lemmas
  • !t1 t2. ~(t1 /\ t2) <=> ~t1 \/ ~t2
  • !t1 t2. ~(t1 \/ t2) <=> ~t1 /\ ~t2
  • !t. ~ ~t <=> t
  • !t. (t <=> T) \/ (t <=> F)
  • !p l. ~ALL p l <=> EX (\x. ~p x) l
  • !p l. ~ALL (\x. ~p x) l <=> EX p l
  • !p l. ~EX p l <=> ALL (\x. ~p x) l
  • Constructive Lemmas
  • T
  • !x. x = x
  • !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2
  • !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2
  • !t1 t2. ~(t1 /\ t2) <=> ~t1 \/ ~t2
  • !t1 t2. ~(t1 \/ t2) <=> ~t1 /\ ~t2
  • !t. (!x. t) <=> t
  • !t. ~ ~t <=> t
  • !t. F /\ t <=> F
  • !t. T /\ t <=> t
  • !t. t /\ F <=> F
  • !t. t /\ T <=> t
  • !t. t /\ t <=> t
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !t. F \/ t <=> t
  • !t. T \/ t <=> T
  • !t. t \/ F <=> t
  • !t. t \/ T <=> T
  • !t. t \/ t <=> t
  • !t. (t <=> T) \/ (t <=> F)
  • !f y. (\x. f x) y = f y
  • !t. (\x. t x) = t
  • !p h t. ALL p (CONS h t) <=> p h /\ ALL p t
  • !p h t. EX p (CONS h t) <=> p h \/ EX p t
  • !p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)
  • !p l. ~ALL p l <=> EX (\x. ~p x) l
  • !p l. ~ALL (\x. ~p x) l <=> EX p l
  • !p l. ~EX p l <=> ALL (\x. ~p x) l
  • !p. ~EX p []
  • !p. ALL p []
  • !p. p [] /\ (!h t. p t ==> p (CONS h t)) ==> (!l. p l)
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package list-set-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page