Entry Value
Name take_suc
Conclusion !n h t. n <= LENGTH t ==> take (SUC n) (CONS h t) = CONS h (take n t)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !h t. HD (CONS h t) = h
  • !h t. TL (CONS h t) = t
  • !x. x = x
  • !t. (!x. t) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package list-take-drop-def
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page