Entry Value
Name stream_5
Conclusion !s. sappend [] s = s
Constructive Proof Yes
Axiom
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) 
(\a. a = (\b. (\c. c) = (\c. c)))
(\d. (\e. e = (\f. (\c. c) = (\c. c)))
     (\g. (\h i.
               (\j k.
                    (\l. l j k) =
                    (\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c))))
               h
               i <=>
               h)
          (d g)
          (d ((@) d))))
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !t1 t2. (if F then t1 else t2) = t2
  • !x y. x = y <=> y = x
  • !x y. x = y ==> y = x
  • !x. x = x
  • !x. (@y. y = x) = x
  • !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2
  • !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2
  • !t. (!x. t) <=> t
  • !t. F /\ t <=> F
  • !t. T /\ t <=> t
  • !t. t /\ F <=> F
  • !t. t /\ T <=> t
  • !t. t /\ t <=> t
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f y. (\x. f x) y = f y
  • !f g. (!x. f x = g x) <=> f = g
  • !f g. (!x. f x = g x) ==> f = g
  • !t. (\x. t x) = t
  • !p x. p x ==> p ((@) p)
  • !p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)
  • !p. p _0 /\ (!n. p n ==> p (SUC n)) ==> (!n. p n)
  • !m n. m + SUC n = SUC (m + n)
  • !m n. SUC m + n = SUC (m + n)
  • !m n. (m + n) - n = m
  • !m. ~(m < 0)
  • !n. PRE (SUC n) = n
  • !m. m + 0 = m
  • !n. 0 + n = n
  • !m. m - 0 = m
  • !s. stream (snth s) = s
  • !s. sappend [] s = s
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • COND = (\t t1 t2. @x. ((t <=> T) ==> x = t1) /\ ((t <=> F) ==> x = t2))
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • (?) = (\p. p ((@) p))
  • NUMERAL = (\n. n)
  • LENGTH [] = 0
  • Contained Package stream
    Comment Stream package from OpenTheory.
    Back to main package pageBack to contained package page