Entry
Value
Name
stream_2
Conclusion
smap I = I
Constructive Proof
Yes
Axiom
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
Classical Lemmas
N|A
Constructive Lemmas
T
!x y. x = y <=> y = x
!x y. x = y ==> y = x
!x. x = x
!x. I x = x
!t. (!x. t) <=> t
!t. F ==> t <=> T
!t. T ==> t <=> t
!t. t ==> F <=> ~t
!t. t ==> T <=> T
!t. t ==> t
!f y. (\x. f x) y = f y
!f g. (!x. f x = g x) <=> f = g
!f g. (!x. f x = g x) ==> f = g
!f. I o f = f
!t. (\x. t x) = t
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
I = (\x. x)
(~) = (\p. p ==> F)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
(o) = (\f g x. f (g x))
smap I = I
Contained Package
stream
Comment
Stream package from OpenTheory.
Back to main package page
Back to contained package page