| Entry |
Value |
|
Name |
probability_13 |
|
Conclusion |
!r. split_random r =
(let s1,s2 = ssplit (dest_random r) in mk_random s1,mk_random s2) |
|
Constructive Proof |
Yes |
|
Axiom |
N|A |
|
Classical Lemmas |
N|A |
|
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!r. split_random r =
(let s1,s2 = ssplit (dest_random r) in mk_random s1,mk_random s2)T <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T)) |
|
Contained Package |
probability |
|
Comment |
Probability package from OpenTheory. |