Entry Value
Name one_Axiom
Conclusion !e. ?!fn. fn one = e
Constructive Proof Yes
Axiom
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x y. x = y <=> y = x
  • !x y. x = y ==> y = x
  • !e. ?fn. fn one = e
  • !x. x = x
  • !v. v = one
  • !t. (!x. t) <=> t
  • !t. F /\ t <=> F
  • !t. T /\ t <=> t
  • !t. t /\ F <=> F
  • !t. t /\ T <=> t
  • !t. t /\ t <=> t
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f y. (\x. f x) y = f y
  • !f g. (!x. f x = g x) <=> f = g
  • !f g. (!x. f x = g x) ==> f = g
  • !t. (\x. t x) = t
  • !p. (?!x. p x) <=> (?x. p x) /\ (!x x'. p x /\ p x' ==> x = x')
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • (?!) = (\p. (?) p /\ (!x y. p x /\ p y ==> x = y))
  • Contained Package unit-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page