Entry Value
Name natural-prime_54
Conclusion inc_sieve = (\s. let n,ps = dest_sieve s in let n' = n + 1 in let b,ps' = inc_counters_sieve n' 1 ps in b,mk_sieve (n',ps'))
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !t. (!x. t) <=> t
  • !f y. (\x. f x) y = f y
  • T <=> (\p. p) = (\p. p)
  • LET_END = (\t. t)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • LET = (\f. f)
  • (!) = (\p. p = (\x. T))
  • NUMERAL = (\n. n)
  • inc_sieve = (\s. let n,ps = dest_sieve s in let n' = n + 1 in let b,ps' = inc_counters_sieve n' 1 ps in b,mk_sieve (n',ps'))
  • Contained Package natural-prime
    Comment Natural-prime package from OpenTheory.
    Back to main package pageBack to contained package page