Entry Value
Name O_I
Conclusion !f. f o I = f
Constructive Proof Yes
Axiom
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x y. x = y <=> y = x
  • !x y. x = y ==> y = x
  • !x. x = x
  • !x. I x = x
  • !t. (!x. t) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f y. (\x. f x) y = f y
  • !f g. (!x. f x = g x) <=> f = g
  • !f g. (!x. f x = g x) ==> f = g
  • !t. (\x. t x) = t
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • I = (\x. x)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (o) = (\f g x. f (g x))
  • Contained Package function-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page