Entry Value
Name MEM_SET_OF_LIST
Conclusion !l x. MEM x l <=> x IN set_of_list l
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x h t. MEM x (CONS h t) <=> x = h \/ MEM x t
  • !x y s. x IN y INSERT s <=> x = y \/ x IN s
  • !h t. set_of_list (CONS h t) = h INSERT set_of_list t
  • !x s. x INSERT s = {y | y = x \/ y IN s}
  • !x. ~(x IN {})
  • !x. ~MEM x []
  • !x. x = x
  • !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2
  • !p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2
  • !t. (!x. t) <=> t
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !f y. (\x. f x) y = f y
  • !p a. (?x. a = x /\ p x) <=> p a
  • !p x. x IN GSPEC p <=> p x
  • !p x. x IN {y | p y} <=> p x
  • !p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)
  • !p. p [] /\ (!h t. p t ==> p (CONS h t)) ==> (!l. p l)
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • {} = {x | F}
  • set_of_list [] = {}
  • Contained Package list-set-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page