Entry
Value
Name
zipwith_sing
Conclusion
!f x y. zipwith f [x] [y] = [f x y]
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!h t. HD (CONS h t) = h
!h t. TL (CONS h t) = t
!x. x = x
!t. (!x. t) <=> t
!t. F ==> t <=> T
!t. T ==> t <=> t
!t. t ==> F <=> ~t
!t. t ==> T <=> T
!t. t ==> t
!f h1 h2 t1 t2. LENGTH t1 = LENGTH t2 ==> zipwith f (CONS h1 t1) (CONS h2 t2) = CONS (f h1 h2) (zipwith f t1 t2)
!f. zipwith f [] [] = []
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
(~) = (\p. p ==> F)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
LENGTH [] = 0
Contained Package
list-zip-thm
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page