Entry Value
Name zip_sing
Conclusion !x y. zip [x] [y] = [x,y]
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !h t. HD (CONS h t) = h
  • !h t. TL (CONS h t) = t
  • !x. x = x
  • !t. (!x. t) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f h1 h2 t1 t2. LENGTH t1 = LENGTH t2 ==> zipwith f (CONS h1 t1) (CONS h2 t2) = CONS (f h1 h2) (zipwith f t1 t2)
  • !f x y. zipwith f [x] [y] = [f x y]
  • !f. zipwith f [] [] = []
  • !l1 l2. zip l1 l2 = zipwith (,) l1 l2
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • LENGTH [] = 0
  • Contained Package list-zip-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page