Entry |
Value |
Name |
take_suc |
Conclusion |
!n h t. n <= LENGTH t ==> take (SUC n) (CONS h t) = CONS h (take n t) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!h t. HD (CONS h t) = h!h t. TL (CONS h t) = t!x. x = x!t. (!x. t) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> tF <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T)) |
Contained Package |
list-take-drop-def |
Comment |
Standard HOL library retrieved from OpenTheory |