Theorems |
ISL_INL : !a. ISL (INL a)ISL_INR : !b. ~ISL (INR b)ISR_INL : !a. ~ISR (INL a)ISR_INR : !b. ISR (INR b)OUTL : !a. OUTL (INL a) = aOUTR : !b. OUTR (INR b) = bcase_sum_left : !f g a. case_sum f g (INL a) = f acase_sum_right : !f g b. case_sum f g (INR b) = g bsum_INDUCT : !p. (!a. p (INL a)) /\ (!b. p (INR b)) ==> (!x. p x)sum_RECURSION : !f g. ?fn. (!a. fn (INL a) = f a) /\ (!b. fn (INR b) = g b) |