Entry Value
Name stream_29
Conclusion !f g. smap f o smap g = smap (f o g)
Constructive Proof Yes
Axiom
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x y. x = y <=> y = x
  • !x y. x = y ==> y = x
  • !x. x = x
  • !t. (!x. t) <=> t
  • !t. (T <=> t) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f y. (\x. f x) y = f y
  • !f g. (!x. f x = g x) <=> f = g
  • !f g. (!x. f x = g x) ==> f = g
  • !f s. smap f s = stream (f o snth s)
  • !t. (\x. t x) = t
  • !f g x. (f o g) x = f (g x)
  • !f g. smap f o smap g = smap (f o g)
  • !f g h. (f o g) o h = f o g o h
  • !f g h. f o g o h = (f o g) o h
  • !s. stream (snth s) = s
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • (o) = (\f g x. f (g x))
  • Contained Package stream
    Comment Stream package from OpenTheory.
    Back to main package pageBack to contained package page