Theorems |
MEASURE_LE : !m a b. (!y. MEASURE m y a ==> MEASURE m y b) <=> m a <= m bWF_DCHAIN : !r. WF r <=> ~(?f. !n. r (f (SUC n)) (f n))WF_EREC : !r. WF r
==> (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x)
==> (?!f. !x. f x = h f x))WF_FINITE : !r. (!x. ~r x x) /\
(!x y z. r x y /\ r y z ==> r x z) /\
(!x. FINITE {y | r y x})
==> WF rWF_MEASURE : !m. WF (MEASURE m)WF_REC : !r. WF r
==> (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x)
==> (?f. !x. f x = h f x))WF_REC_INVARIANT : !r. WF r
==> (!h s.
(!f g x.
(!z. r z x ==> f z = g z /\ s z (f z))
==> h f x = h g x /\ s x (h f x))
==> (?f. !x. f x = h f x))WF_REC_TAIL : !p g h. ?f. !x. f x = (if p x then f (g x) else h x)WF_REC_WF : !r. (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x)
==> (?f. !x. f x = h f x))
==> WF rWF_UREC : !r. WF r
==> (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x)
==> (!f g. (!x. f x = h f x) /\ (!x. g x = h g x) ==> f = g))WF_UREC_WF : !r. (!h. (!f g x. (!z. r z x ==> (f z <=> g z)) ==> (h f x <=> h g x))
==> (!f g. (!x. f x <=> h f x) /\ (!x. g x <=> h g x) ==> f = g))
==> WF rWF_num : WF (<)irreflexive_successor : irreflexive successorsubrelation_successor_lt : subrelation successor (<)transitive_closure_successor_lt : transitive_closure successor = (<)transitive_lt : transitive (<)transitive_successor_lt : !r. subrelation successor r /\ transitive r ==> subrelation (<) rwellfounded_successor : WF successor |