Entry Value
Package Name relation-natural-thm
Count 18
Theorems
  • MEASURE_LE : !m a b. (!y. MEASURE m y a ==> MEASURE m y b) <=> m a <= m b
  • WF_DCHAIN : !r. WF r <=> ~(?f. !n. r (f (SUC n)) (f n))
  • WF_EREC : !r. WF r ==> (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x) ==> (?!f. !x. f x = h f x))
  • WF_FINITE : !r. (!x. ~r x x) /\ (!x y z. r x y /\ r y z ==> r x z) /\ (!x. FINITE {y | r y x}) ==> WF r
  • WF_MEASURE : !m. WF (MEASURE m)
  • WF_REC : !r. WF r ==> (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x) ==> (?f. !x. f x = h f x))
  • WF_REC_INVARIANT : !r. WF r ==> (!h s. (!f g x. (!z. r z x ==> f z = g z /\ s z (f z)) ==> h f x = h g x /\ s x (h f x)) ==> (?f. !x. f x = h f x))
  • WF_REC_TAIL : !p g h. ?f. !x. f x = (if p x then f (g x) else h x)
  • WF_REC_WF : !r. (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x) ==> (?f. !x. f x = h f x)) ==> WF r
  • WF_UREC : !r. WF r ==> (!h. (!f g x. (!z. r z x ==> f z = g z) ==> h f x = h g x) ==> (!f g. (!x. f x = h f x) /\ (!x. g x = h g x) ==> f = g))
  • WF_UREC_WF : !r. (!h. (!f g x. (!z. r z x ==> (f z <=> g z)) ==> (h f x <=> h g x)) ==> (!f g. (!x. f x <=> h f x) /\ (!x. g x <=> h g x) ==> f = g)) ==> WF r
  • WF_num : WF (<)
  • irreflexive_successor : irreflexive successor
  • subrelation_successor_lt : subrelation successor (<)
  • transitive_closure_successor_lt : transitive_closure successor = (<)
  • transitive_lt : transitive (<)
  • transitive_successor_lt : !r. subrelation successor r /\ transitive r ==> subrelation (<) r
  • wellfounded_successor : WF successor
  • Back to main package page