Theorems |
big_interr_def : !s. big_interr s = set_to_relation (INTERS (IMAGE relation_to_set s))big_unionr_def : !s. big_unionr s = set_to_relation (UNIONS (IMAGE relation_to_set s))emptyr_def : emptyr = set_to_relation {}interr_def : !r s.
interr r s = set_to_relation (relation_to_set r INTER relation_to_set s)irreflexive_def : !r. irreflexive r <=> (!x. ~r x x)reflexive_def : !r. reflexive r <=> (!x. r x x)relation_to_set_def : !r. relation_to_set r = {x,y | r x y}set_to_relation_def : !s x y. set_to_relation s x y <=> x,y IN ssubrelation_def : !r s. subrelation r s <=> relation_to_set r SUBSET relation_to_set stransitive_closure_def : !r. transitive_closure r = big_interr {s | subrelation r s /\ transitive s}transitive_def : !r. transitive r <=> (!x y z. r x y /\ r y z ==> r x z)unionr_def : !r s.
unionr r s = set_to_relation (relation_to_set r UNION relation_to_set s)univr_def : univr = set_to_relation UNIV |