Entry
Value
Name
real_min
Conclusion
!m n. min m n = (if m <= n then m else n)
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
real-def
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page