Entry |
Value |
Name |
probability_17 |
Conclusion |
!f r n.
random_vector f (SUC n) r =
(let r1,r2 = split_random r in CONS (f r1) (random_vector f n r2)) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!f r n.
random_vector f (SUC n) r =
(let r1,r2 = split_random r in CONS (f r1) (random_vector f n r2))T <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T)) |
Contained Package |
probability |
Comment |
Probability package from OpenTheory. |