Entry
Value
Name
one_INDUCT
Conclusion
!p. p one ==> (!x. p x)
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!x. x = x
!v. v = one
!t. (!x. t) <=> t
!t. (F <=> t) <=> ~t
!t. (T <=> t) <=> t
!t. (t <=> F) <=> ~t
!t. (t <=> T) <=> t
!t. F ==> t <=> T
!t. T ==> t <=> t
!t. t ==> F <=> ~t
!t. t ==> T <=> T
!t. t ==> t
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
(~) = (\p. p ==> F)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
unit-thm
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page