Entry |
Value |
Name |
natural-prime_54 |
Conclusion |
inc_sieve =
(\s. let n,ps = dest_sieve s in
let n' = n + 1 in
let b,ps' = inc_counters_sieve n' 1 ps in b,mk_sieve (n',ps')) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f yT <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T))NUMERAL = (\n. n)inc_sieve =
(\s. let n,ps = dest_sieve s in
let n' = n + 1 in
let b,ps' = inc_counters_sieve n' 1 ps in b,mk_sieve (n',ps')) |
Contained Package |
natural-prime |
Comment |
Natural-prime package from OpenTheory. |