| Entry |
Value |
|
Name |
natural-prime_48 |
|
Conclusion |
!s. next_sieve s =
(let b,s' = inc_sieve s in if b then max_sieve s',s' else next_sieve s') |
|
Constructive Proof |
Yes |
|
Axiom |
N|A |
|
Classical Lemmas |
N|A |
|
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!s. next_sieve s =
(let b,s' = inc_sieve s in if b then max_sieve s',s' else next_sieve s')T <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T)) |
|
Contained Package |
natural-prime |
|
Comment |
Natural-prime package from OpenTheory. |