Entry |
Value |
Name |
natural-prime_47 |
Conclusion |
!p. prime p <=> ~(p = 1) /\ (!n. divides n p ==> n = 1 \/ n = p) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!p. prime p <=> ~(p = 1) /\ (!n. divides n p ==> n = 1 \/ n = p)T <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T))NUMERAL = (\n. n) |
Contained Package |
natural-prime |
Comment |
Natural-prime package from OpenTheory. |